
CTRNN Parameter Learning
using Differential Evolution

Ivanoe De Falco1 and Antonio Della Cioppa2 and Francesco Donnarumma3 and
Domenico Maisto1 and Roberto Prevete3 and Ernesto Tarantino1

Abstract. Target behaviours can be achieved by finding
suitable parameters for Continuous Time Recurrent Neural
Networks (CTRNNs) used as agent control systems. Differ-
ential Evolution (DE) has been deployed to search parameter
space of CTRNNs and overcome granularity, boundedness and
blocking limitations. In this paper we provide initial support
for DE in the context of two sample learning problems.

Key words: CTRNN, Differential Evolution, Dynamical
Systems, Genetic Algorithms

1 INTRODUCTION

Insofar as Continuous Time Recurrent Neural Networks
(CTRNNs) are universal dynamics approximators [1], the
problem of achieving target agent behaviours is redefined as
the problem of identifying suitable network parameters.

Although a variety of different learning algorithms exists,
evolutionary approaches like Genetic Algorithms (GA) are
usually deployed to perform searches in the parameter space
of CTRNNs [5]. However GAs require some kind of network
encoding which may greatly influence parameter searches. In
fact, the resolution of the parameters is limited by the bit
resolution of the encoding (granularity) and the parameters
cannot assume values falling outside an encoding a priori fixed
interval (boundedness).

Yamauchi and Beer [5] proposed a real-valued encoding for
CTRNNs, which improves the learning process allowing pa-
rameter values to be in R. However, problems arise that, in
not rare cases, prevent real-valued GAs (rvGA) from finding
global optima (blocking) [2].

Here we propose an approach based on a Differential Evolu-
tion (DE) algorithm [4] which combines fast learning with the
possibility of overcoming the limitations mentioned above.

Section 2 introduces the DE algorithm. In Section 3 two
sample CTRNN parameter search problems are solved with
DE. Finally in Section 4, the obtained results are discussed
and future developments of this approach are proposed.

2 DIFFERENTIAL EVOLUTION

DE is a stochastic, population-based evolutionary algorithm
[4] which addresses a generic optimization problem with m

1 ICAR-CNR, Naples, Italy -{ivanoe.defalco, domenico.maisto,
ernesto.tarantino}@na.icar.cnr.it

2 DIIIE, Università di Salerno - adellacioppa@unisa.it
3 Università di Napoli Federico II -
{donnarumma, prevete}@na.infn.it

real parameters by starting with a randomly initialized pop-
ulation consisting of n individuals, each made up of m real
values, and, subsequently, by updating the population from a
generation to the next one by means of many different trans-
formation schemes commonly named as strategies [4]. In all
of these strategies DE generates new individuals by adding to
an individual a number of weighted difference vectors made
up of couples of population individuals.

In the strategy chosen, starting from xi, the i-th individ-
ual, a new trial one x′i is generated, by perturbing the best
individual xbest by means of 2 difference vectors. The generic
j-th component candidate is:

x′i,j = xbest,j + F · [(xr1,j − xr2,j) + (xr3,j − xr4,j)]

with 4 randomly generated integer numbers r1, r2, r3, r4 in
{1, . . . , n}, differing from one another and F the parameter
which controls the magnitude of the differential variation.

So in DE new candidate solutions are created by using vec-
tor differences, whereas traditional rvGAs rely on probabilis-
tic selection, random perturbation (mutation) and on mixing
(recombination) of individuals. The three phases of a standard
rvGA, selection, recombination and mutation, are combined
in DE in one operation which is carried out for each individ-
ual. According to this, in rvGA not all the elements are in-
volved in each phase of the generation of the new population,
while, by contrast, DE algorithm iterates through the entire
population and generates a candidate for each individual.

3 EXPERIMENTS

We tested the efficacy of CTRNN training by DE on two sam-
ple experiments where the approach seems to solve problems
outlined in Section 1. Parameters ruling the DE algorithm
were assigned experimentally via a set of training trials.

3.1 Cusp point learning

Let us consider a CTRNN made up of a single self-connected
neuron. The equation of the system is given by

τ · ẏ = −y + wσ (y + θ) + I (1)

where for simplicity we set the time constant τ = 1 and the
bias θ = 0. Notice that no elementary expression for the so-
lution of (1) exists. Such system has a cusp point, that is
the only bifurcation point in which the system undergoes a



picthfork bifurcation [3]. The goal of the experiment is to
find such cusp point. To evaluate each network candidate
(I ′, w′) we let it evolve for a sufficient time T so that we
can consider y′(T ) ' ȳ′. Then we choose as fitness function
FCP (y′ (I ′, w′)) = ffixed + ftan + fcusp with terms reward-
ing respectively fixed point, non hyperbolic and cusp curve
intersection condition.

Average and standard deviation values found for (I, w) in
10 runs using the DE algorithm are Ī = −2.00015 with a
standard deviation equal to 1.6 · 10−4 and w̄ = 4.0003 with
standard deviation 3.1·10−4. These values are absolutely close
to the coordinates (Ĩ , w̃) = (−2, 4) of the cusp point which
can be formally inferred. Figure (1) shows fitness trend as a
function of the generation number for average, best and worst
case. The constant and smooth decrease suggests a gradual
and continuous learning improvement as the generation num-
ber grows. In addition, the evident increasing resolution of the
parameter values observable during DE runs demonstrates the
possibility of tackling the granularity problem, theoretically
having the machine precision as only limit.

Figure 1. Cusp point learning: fitness plots of runs
corresponding to the average, worst and best solutions as a

function of the generation number

3.2 Sequence generator task

The goal of this task is to train a control network able to
switch between two different behaviours (fixed points 0 and
1) anytime a signal trigger is detected [5]. Focusing on a net-
work of three neurons, we generate a random sequence for
each generation I′ = [bit1, . . . , bitM ], where M is the length
of the sequence and biti ∈ {0, 1} ∀i ∈ M . The length of every
sequence of 0 (no signal) or 1 (trigger) has been extracted
from a Gaussian distribution. For every sequence generation
we generate the desired target t′ =

{
t1, . . . , tM

}
. We measure

the output candidate y =
{
ȳ1
3 , . . . , ȳM

3

}
with a fitness func-

tion FSG(y(w)) = FHM (y(w))+k ·FHD (y(w)) with the first
term (the Hamming distance) and the second term respec-
tively measuring how many times and how different the fixed
point values are from the desired targets. We set k = 0.01 so
as to weight the first contribute more than the second.

In each of the 10 runs DE is able to find optimal solu-
tions, even reaching the global minima. It is worth remarking
that the weights found are very sparse (e.g. w ≈ 21.19 and
w ≈ 1.86 ·1018) so that by fixing a priori intervals many good
solutions would become inaccessible. This sparseness suggests
that DE is almost able to investigate the entire parameter

Figure 2. Sequence generator task. Left: fitness of three
different runs plotted as a function of the generation number.
Right: Fitness 1 from 1000-th to 2500-th generation. Figures
show DE avoiding blocking by escaping from local minima.

space allowing the surmounting of the boundedness problem.
Moreover each run passes through a different sequence of local
minima, from which the DE algorithm has to escape. So the
descent of the function towards the global minimum occurs in
“steps” (see Left of Figure 2). Right of Figure 2 illustrates
how the search of the parameters continues even in the very
proximity of optimal values, finding better and better solu-
tions. Moving by vector differences in the parameter space is
“as if” DE is capable of calibrating the magnitude and the
direction towards the reaching of the minima in it. The result
is that every run is able to overcome the blocking problem.

4 CONCLUSIONS

We showed two experiments solved by means of DE which
provides a simple and a “physical” way to perform CTRNN
parameter space search. The first experiment provides an ex-
ample of how the granularity problem can be overcome. DE
showed a high precision in determining the parameter values
which can be still improved by letting the execution run. The
second experiment points to ways in which boundedness and
blocking can be overcome, too, by a DE approach. Using only
three neurons we solve the sequence generator task. The found
parameter values are sparse, so fixing a priori intervals would
have cut many possible solutions. Furthermore, although each
run passes through a sequence of local minima, DE algorithm
can escape from them jumping step by step towards a better
approximation of a global minimum.

After this encouraging results next studies will concern a
direct comparison with rvGAs particularly on local minima
trapping issue and a deeper investigation on theoretical details
of DE approach for CTRNN learning.

References
[1] Ken-ichi Funahashi and Yuichi Nakamura, ‘Approximation of

dynamical systems by continuous time recurrent neural net-
works’, Neural Networks, 6(6), 801–806, (1993).

[2] David E. Goldberg, ‘Real-coded genetic algorithms, virtual al-
phabets, and blocking’, Complex Systems, 5, 139–167, (1991).

[3] J. K. Hale and H Kocac, Dynamics and Bifurcations, Springer-
Verlag, 1991.

[4] K Price, R Storn, and Lampinen J, Differential Evolution: A
Practical Approach to Global Optimization, Natural Comput-
ing Series, Springer-Verlag, 2005.

[5] Brian M. Yamauchi and Randall D. Beer, ‘Sequential behavior
and learning in evolved dynamical neural networks’, Adaptive
Behavior, 2(3), 219–246, (1994).


